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Simple measure for complexity
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A measure of ‘‘complexity’’ is proposed, based on appropriately defined notions of ‘‘order’’ and ‘‘disor-
der,’’ which has a considerable degree of flexibility in its dependence on these concepts. The possible func-
tional dependencies which result encompass those of many earlier definitions of complexity. The proposed
measure is in principle easy to calculate and has the property of an intensive thermodynamic quantity. With
appropriate choices of parameters it behaves similarly to ‘‘effective measure complexity’’ for the logistic map.
It is also a generalization of the ‘‘normalized complexity’’ of Lo´pez-Ruizet al., but does not suffer from
‘‘over-universality.’’ @S1063-651X~99!03702-2#

PACS number~s!: 05.20.2y, 05.90.1m
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I. INTRODUCTION

Many authors have commented on and discussed the
tiplicity and variety of definitions of complexity in the litera
ture ~@1–6#, and references therein!. Current definitions may
be divided into three broad categories. First are those de
tions which take complexity to be a monotonically increa
ing function of disorder; examples are algorithmic comple
ity @7,8# and the various entropies@9–11#. As numerous as
definitions of the first category are those in which complex
is a convex function of disorder; i.e., complexity is a min
mum for both completely ordered and completely disorde
systems, and a maximum at some intermediate level of
order or order. To this category belong logical depth@12# and
thermodynamic depth@1#. Finally, there are some definition
which take complexity to be loosely the same as order; th
identify complexity broadly with the level of self
organization and self-organization with order~see@3#!. The
three categories of complexity are summarized schematic
in Fig. 1.

In recent studies@13–15# we have introduced anothe
measure of complexity which, depending on the choice
parameters, may display the behavior of any of the th
categories of Fig. 1. The impetus for developing this meas
was provided by the question of whether biological and ot
complex systems evolve so as to optimize complexity,
putting it the other way around, how such systems wo
evolve if complexity were to be maximized. An approach
this problem can be based on optimization theory@16#, but to
make this approach tractable one needs an easily evalu
measure for complexity. While many of the previously pr
posed definitions are intuitively appealing, they often suf
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from the disadvantage of being difficult to compute. An e
ample is algorithmic complexity@7,8#, the length of the
shortest possible program necessary to reproduce a given
ject. The difficulty arises in proving that a given program
indeed the shortest. In contrast, our measure for comple
can be calculated easily. Notwithstanding the ease of c
putation, our measure behaves similarly to the effective m
sure complexity@17# for the logistic map.

An additional advantage of our complexity measure
that it is independent of size effects in a manner similar
intensive thermodynamic quantities such as temperatur
pressure. While it is possible to argue that larger systems
necessarily more complex simply by virtue of their grea
size, we seek a complexity measure which does not incre
simply because a system becomes larger. This advanta
not unique to our proposal; algorithmic complexity@8# as
well as some other earlier proposals for complexity shar
@18,19#.

Feldman and Crutchfield@20# have independently arrived
at our complexity measure for one special set of parame
by a procedure they refer to as ‘‘repairing nonextensivity’’
still another measure, ‘‘normalized complexity,’’ put fo
ward by López-Ruizet al. @21#. Indeed, for this paramete
set the measure of Lo´pez-Ruizet al. will be shown to be an
approximation to our measure. Feldman and Crutchfi
criticize the repaired measure as being ‘‘over-universa
i.e., it has the same dependence on disorder under all co
tions. We will show that this is not the case.

00,
-

FIG. 1. The three categories of complexity as a function
disorder.
1459 ©1999 The American Physical Society
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II. MEASURES OF DISORDER, ORDER,
AND COMPLEXITY

A. Disorder and order

Since we will express our complexity measure in terms
disorder and order, we first need to present our measure
the latter. As pointed out earlier by one of us@22–24#, defi-
nitions of order and disorder can suffer from the same pr
lem regarding system size as those of complexity. Often
tropy is taken to be an appropriate measure of disor
However, this tacitly assumes that the size of the system
measured by the number of states available to it, does
change. In fact, if the number of states of the system
creases then the entropy and therefore the disorder of
system will also increase for no other reason than the
crease in the number of states. To circumvent this problem
has been proposed@22–24# that ‘‘disorder’’ be defined as

D[S/Smax, ~1!

where S is the Boltzmann-Gibbs-Shannon~BGS! entropy
@9,10#

S[2k(
i 51

N

pi lnpi . ~2!

pi is the probability of statei of theN states available to the
system, andk is the Boltzmann constant, appropriate to
physical system. It can be replaced by any other appropr
constant for other types of systems~e.g., ln2 for information
systems! or omitted for a dimensionless entropy.~When re-
ferring to specific measures of disorder, order, or complex
we enclose these words in quotation marks to distinguish
measures from the general concepts.!

In the simplest case, that of an isolated system, the
tropy maximum occurs at the equiprobable distribution,pi
51/N, 1< i<N, yielding

Smax5klnN ~3!

as the maximum possible entropy. However, in many ca
this maximum is not attainable, for example in grand cano
cal equilibrium, when the mean energy and mean numbe
particles are fixed. Consider a system of particles with
given total energy and assume that it is not at equilibriu
We now isolate the system and let it relax to equilibriu
Since the system is now isolated neither the total numbe
particles nor the total energy can change. The equilibri
state is characterized as that state with the maximum ent
subject to the constraints on particle number and total e
ergy. This maximum entropy will be less than that corr
sponding to the equiprobable distribution, and is the app
priate maximum entropy to be used in the definition
disorder for this system. This was done in our study o
nonequilibrium ideal gas@13#. When such constraints ar
absent, as in the microcanonical ensemble, and the entro
maximized, one naturally finds the larger entropy of Eq.~3!.

‘‘Order’’ is defined as

V[12D. ~4!
f
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Both ‘‘order’’ and ‘‘disorder’’ lie between 0 and 1 and ar
freed from the size effect. It is now possible that entropy a
‘‘order’’ increase together as the size of the system increa
This has been shown to occur for certain simple, we
defined examples, as well as for certain aspects of the
verse, including evolution and phylogeny@13–15,22–25#.

B. Complexity

For complexity measures of category I~Fig. 1! complex-
ity is a monotonically increasing function of disorder. Sin
the definition@Eq. ~1!# of disorder has advantages over e
tropy as a measure of disorder, any monotonically increas
function of disorder as defined here would also be an app
priate measure of complexity for this category. For the th
category of complexity measures, where complexity is tak
to increase with order, any increasing function of order@Eq.
~4!# would similarly be an appropriate measure. For categ
II complexity measures, where complexity is a convex fun
tion of disorder, one of the simplest possible function
forms for complexity is the product of ‘‘order’’ and ‘‘disor-
der,’’ DV5D(12D)5V(12V). All three categories of
complexity measures can thus be subsumed by a measu
the form

Gab[DaVb5Da~12D!b5Vb~12V!a, ~5!

which we call the ‘‘simple complexity of disorder strengtha
and order strengthb. ’’ When b vanishes anda.0, ‘‘com-
plexity’’ is an increasing function of ‘‘disorder,’’ and we
have a measure of category I. Whena vanishes andb.0,
‘‘complexity’’ is an increasing function of ‘‘order,’’ and we
have a definition of category III. When botha and b are
nonvanishing and positive, ‘‘complexity’’ vanishes at ze
‘‘disorder’’ and zero ‘‘order,’’ and has a maximum of

~Gab!max5aabb/~a1b!~a1b! ~6!

at

D5a/~a1b!, V5b/~a1b!.

Several cases for botha and b non-negative are shown in
Fig. 2. The qualitative behavior if eithera or b ~or both! is

FIG. 2. ‘‘Complexity’’ Gab as a function of ‘‘disorder’’D for
a, b>0. Shown are one case withGab increasing monotonically
with D (a51/4, b50), one case withGab decreasing monotoni-
cally with D (a50, b54), and two cases whereGab shows a
convex dependence onD (a51, b51/4; a5b51).
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PRE 59 1461SIMPLE MEASURE FOR COMPLEXITY
negative, as well as possible normalizations and transfor
tions to extensive quantities, are treated briefly in the App
dix.

Whena or b are both positiveGab can be interpreted in
terms of the popular notion that complex systems are o
nonequilibrium systems. As can be inferred from the disc
sion of the maximum entropy in the preceding section,V
512S/Smax512S/Seq5(Seq2S)/Seq is a measure of the dis
tance from equilibrium; in fact, Ebeling and Klimontovic
@26# introducedSeq2S as a correct measure of distance fro
equilibrium where the equilibrium state is achieved by t
isolation procedure described above. Thus, for nonequ
rium systems, our simple measure of complexity@Eq. ~5!# is
a function of both the ‘‘disorder’’ of the system and its di
tance from equilibrium. ‘‘Complexity’’ vanishes either if th
system is at equilibrium, implying maximum ‘‘disorder,’’ o
if it is completely ordered, implying maximal distance fro
equilibrium. Only if the system has some less than maxim
‘‘order’’ and is not at equilibrium, does it possess a nonv
nishing level of ‘‘complexity.’’

III. THE LOGISTIC MAP—AN EXAMPLE

To illustrate the properties of our proposals for measu
of complexity we choose the logistic map as a concrete
ample:

xn115rxn~12xn!. ~7!

The logistic map is a well-studied simple system which d
plays a rich variety of behaviors. Depending on the value
the parameterr the map may show a stable point, oscill
tions, period doubling, or chaos. In our calculations for fix
r we discarded the first 10 000 points and calculated an
ditional 100 000. The values ofx were then assigned to 102
bins of equal size between 0 and 1. The probabilities that
points are in the various 1024 bins were then used to ca
late the entropies and other values.r was varied between 3.5
and 4.0 in steps of 0.001.

‘‘Disorder’’ is proportional to the entropy here, since th
number of possible states of the system, just the numbe
bins, does not change from one value ofr to another. The
refinement of the calculations (1024 bins! is enough thatD
behaves identically to the Re´nyi dimensionD (1) ~@5#—Fig.
6!. Thus ‘‘disorder’’ itself does not lead to any new resul
since entropy has often been proposed as a measure for
plexity.

The behavior of the ‘‘complexity’’G11, shown in Fig. 3,
is more interesting. It behaves similarly to the ‘‘effectiv
measure complexity’’~EMC! of Grassberger@17#, as calcu-
lated by Wackerbaueret al. ~@5#—Fig. 10!. It has the same
general form; major maxima as well as less major ones oc
at the same values ofr, as do the plateaus. Different are th
relative values of the peaks. WhyG11 behaves similarly to
EMC is not readily apparent; nor is the breadth of the cl
of systems for which this is the case. The two quantities
after all, calculated in very different ways. Although bo
would be classified by Wackerbaueret al. as structural mea
sures of complexity, EMC is defined in terms of the loc
slopes of the information entropy in an attempt to obtain
dynamic measure. Furthermore, EMC uses these slope
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symbol sequences of lengthn and takes the limit asn→`.
~In symbolic dynamics symbols are assigned to bins, a
sequences are obtained as the strings of symbols in cons
tive steps.! Finally, in calculating EMC Wackerbaueret al.
used a generating partition, i.e., one based on the dyna
of the logistic map, to obtain the binning. On the other ha
in calculatingG11 we used a homogeneous partition~equal
size bins!, used effectively symbol sequences of length 1
calculate the entropy itself, not the local slope, and did
need to take a limit.

Additonal calculations based on the Re´nyi entropy@11# of
order 2, not the BGS entropy, were done. They show
qualitatively the same behavior as those based on the B
entropy.

IV. RELATION TO SOME OTHER COMPLEXITY
MEASURES

López-Ruizet al. @21# have proposed a complexity mea
sure which we now show is an approximation to ourG11.
Their ‘‘normalized complexity’’C̄ is defined by

C̄[DD ~López-Ruizet al.), ~8!

where

D[(
i 51

N S pi2
1

ND 2

~9!

expresses the notion of ‘‘disequilibrium’’ of a system
N accessible states and measures the ‘‘distance’’ of a sys
state, given by the probabilitiesp1 , p2 , . . . ,pN , from the
system state of equiprobability, defined byp15p2
5•••5pN51/N. It vanishes only in microcanonical equilib
rium.

We develop a Taylor expansion ofV around the equi-
probable distribution, denoted by ( )0 . Noting from Eqs.
~1!–~4! that

V511

(
i 51

N

pi lnpi

lnN
, V050 ~10!

the required expansion is

FIG. 3. ‘‘Complexity’’ G11 of the logistic map.
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V5V01(
i 51

N S ]V

]pi
D

0
S pi2

1

ND
1

1

2 (
i 51

N S ]2V

]pi
2 D

0

S pi2
1

ND 2

1•••

501S 1

lnN
21D(

i 51

N S pi2
1

ND
1

1

2

N

lnN (
i 51

N S pi2
1

ND 2

1•••

5
1

2

N

lnN
D1•••. ~11!

As the second term of the expansion vanishes, we see
‘‘disequilibrium’’ D is, to within a factor dependent onN,
just a second-order expansion ofV around the equiprobabl
distribution. Thus the ‘‘normalized complexity’’C̄ satisifies

C̄5DD>D
2lnN

N
V5

2lnN

N
G11. ~12!

Let us also note that the criticism of a somewhat unc
vincing maximum complexityC̄, noted recently@27#, does
not apply to ourG11. Anteneodo and Plastino@27# found that
C̄ is maximum only for distributions$pi% where onepi
52/3 and all otherpi are equal. On the other hand, o
maximum complexity occurs at

D5

2(
i 51

N

pi lnpi

lnN
5

1

2
~13!

and there are many distributions$pi% which can satisfythis
constraint. We give just two of the simpler examples wh
yield maximum complexity, i.e.,D51/2. In the first ex-
ample,n of the statesi have probabilityp* , and the other
N2n states have probability (12np* )/(N2n). For N
5100 andn59 we findp* '0.109 57; this distribution can
be realized in more than 1012 ways. The second exampl
distribution hasn1 states of probabilityp* andn2 states of
probabilityp** ; the otherN2n12n2 states have probability
(12n1p* 2n2p** )/(N2n12n2). Taking N5100 again
andn15n255, we find thatp* 50.002 andp** '0.177 05
yield another set of distributions givingD51/2. These dis-
tributions can be realized in more than 1015 ways. On the
other hand, low complexity situations lead to a compa
tively small number of sets$pi%. ThusG1150 implies one of
only two types of distributions$pi%5$1,0, . . . ,0% or $pi%
5$1/N,1/N, . . . ,1/N%. The ordering of the states has be
arranged here so as to assign the labeli 51 to the state which
at

-

-

has probability 1. ForN5100 there are only a total of 10
distributions which lead toG1150.

Feldman and Crutchfield@20# have independently arrived
at ourG11 from C̄ by a procedure they refer to as ‘‘repairin
nonextensivity.’’ However, they criticizeG11 as being
‘‘over-universal’’; i.e., it is uniquely determined byD. This
criticism applies implicitly to our complexity measure fo
any values ofa and b, and to any other measure of com
plexity which can be expressed solely in terms of disord
Two complexity measures which Feldman and Crutchfi
consider superior in that they are not ‘‘over-universal’’ a
the excess entropy~effective measure complexity@17#! and
the statistical complexityCm @28,29#. They studied these
measures for simple one-dimensional spin systems with
teraction parameterJ and found thatCm5DJ50 and the ef-
fective measure complexity is given byDJ502DJ , where
DJ50 is ~in our nomenclature! the disorder of the system in
the absence of interactions, andDJ the disorder in the pres
ence of interactions@30#. They found that the dependence
both Cm and EMC onDJ varies with the value ofJ. It is in
this sense thatCm and EMC are not ‘‘over-universal.’’

Let us do a similar calculation here. We calculateG11 for
the spin system in the absence of interactions (J50) and
consider its dependence on disorder in the presence of in
actions (JÞ0). Sample results are shown in Fig. 4. We s
that the two curves, one for a ferromagnet and the other
an antiferromagnet, are different. Therefore our complex
measure is not ‘‘overuniversal’’ in the same sense asCm and
EMC are not: ‘‘complexity’’ is obtained from ‘‘disorder’’
calculated under one set of conditions, and its dependenc
‘‘disorder’’ calculated under different conditions is consi
ered.

V. DISCUSSION

We have proposed a definition of complexity which e
compasses the qualitative behavior of most previous de
tions. Depending on the values of the disorder and or
strengths, it may increase monotonically with ‘‘disorder
increase monotonically with ‘‘order,’’ or reach an extremu
value at intermediate values of ‘‘order’’ and ‘‘disorder.

FIG. 4. The ‘‘complexity’’-‘‘disorder’’ diagram for simple spin
systems. ‘‘Complexity’’G11 is calculated in the absence of intera
tions and ‘‘disorder’’ in the presence of interactions. Solid lin
ferromagnet ~interaction parameterJ51, external field50.3!;
dashed line: antiferromagnet~interaction parameterJ521, exter-
nal field51.8!.
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PRE 59 1463SIMPLE MEASURE FOR COMPLEXITY
Furthermore, our definition is easy to calculate in princip
and provides measures of complexity which are independ
of extensive size effects. Atmanspacheret al. @6# have ar-
gued that measures of complexity can be classified as d
ministic or statistical, corresponding broadly to our categ
I ~complexity increases monotonically with disorder! and
category II~complexity shows ‘‘a globally convex behavio
as a function of randomness’’!, respectively. They argue tha
measures of category I are first-order statistical measu
whereas those of category II are second-order measure
would seem that, at least in simple cases, our proposed
nition fits into their arguments in that when complexi
shows nonmonotonic behavior it is a function of two~re-
lated! statistical measures, ‘‘disorder’’ and ‘‘order.’’

It is important that the ‘‘complexity’’G11 behaves as ef
fective measure complexity@17#, one of the more frequently
used measures of complexity, for the logistic map. Why t
is the case will require further investigation. However, it is
significant finding since the ‘‘complexity’’G11 is perhaps
easier to fathom than effective measure complexity and s
G11 is simpler to calculate than EMC.

These results negate what would seem to be reason
contentions that complexity cannot have a simple meas
and that it cannot be expressed simply in terms of entrop
disorder. IndeedGab is a simple quantity and is define
solely in terms of the entropy and system size. Nonethel
it behaves as one would expect for the various comple
categories and even approximates the behavior of EMC
for the logistic map. Our results therefore support Sim
@31#, who argued that the description of complex syste
need not be complex; i.e., complexity is not a conserv
quantity.

The very simplicity of our complexity measure adds to
usefulness. If we were to work only with simple model sy
tems, we might be able to make use of more involved co
plexity measures, but for real systems these will rarely
available. Consider biological systems, which are amo
those for which concepts such as complexity are though
be important. Many of these systems are poorly understo
and we have limited information about them. We mig
count ourselves lucky if we have enough information to
able to make an estimate of the number of states availab
such systems and the relative frequencies of the states.
would just suffice to calculate ‘‘disorder,’’ most likely a
some coarse grained level of description, and through ‘‘d
order’’ our simple measure of complexity. However, at t
present state of our knowledge we are far from hav
enough information to calculate many of the other compl
ity measures, such as effective measure complexity@17# or
statistical complexity@28,29#. Nonetheless, many importan
questions, e.g., the suggestion that neutral evolution can
cur only under conditions of isocomplexity@18,19#, require
that we be able to evaluate some measure of complexi
we are to begin to attack them.
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APPENDIX: POSSIBLE MODIFICATIONS
OF OUR COMPLEXITY MEASURE

In actual cases one might expecta andb in Eq. ~5! to be
positive and nonzero, and this case can be shown to y
type II complexity ~see Fig. 2!. It is of course possible in
principle that eithera or b, or both, be negative. The qual
tative behavior ofGab for the four possible combinations o
signs ofa andb are shown in Figs. 5 and 6.

We also wish to hint at two possible further modificatio
of Eq. ~5!.

1. Normalization

For the cases wherea and b are of the same sign an
there is an extremum in the relation between ‘‘complexit
and ‘‘disorder,’’ it may be convenient to normalize ‘‘com
plexity’’ to its value at the extremum. For these cases
define the normalized ‘‘complexity’’ as

FIG. 5. The qualitative behavior ofGab for the possible combi-
nations of signs ofa andb. All curves show ‘‘complexity’’ as it
changes from zero ‘‘disorder’’~on the left! to maximum ‘‘disor-
der’’ ~on the right!. It is assumed that botha andb are nonzero.

FIG. 6. The same as Fig. 5 but if eithera or b is zero.
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Ĝab[
~a1b!~a1b!

aabb
DaVb

5
~a1b!~a1b!

aabb
Da~12D!b

5
~a1b!~a1b!

aabb
Vb~12V!a. ~A1!

Then the limits on the normalized ‘‘complexity’’ are

0,Ĝab,1~a,b.0!,

1,Ĝab,`~0.a,b!. ~A2!

In the latter case, it might be more appropriate to take
reciprocal of complexity, which could be called ‘‘simplic
ity,’’ to arrive at
-
,

H

A

f

A

e

0,(ˆab,1 S 0.a,b;(ˆab[1/ĜabD .

2. Related extensive complexities

Although we have maintained up to this point that co
plexity should not in general be an extensive quantity, oc
sionally it may be desirable to have an extensive comple
measure. If this is the case, one can simply remove the
malization factorSmax from the definition of ‘‘order’’ or
‘‘disorder’’ or both @Eqs. ~1!–~4!# to obtain the following
extensive ‘‘complexities’’:

Gab[H SaVb5Sa~12S/Smax!
b

Da~Smax2S!b5~S/Smax!
a~Smax2S!b

Sa~Smax2S!b ,
~A3!
A
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